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CARNOT-OSTROGRADSKII THEOREMS 
FOR THE SYSTEMS WITH NONSTATIONARY CONSTRAINTS* 

V.A. SINITSYN 

Variation in the kinetic energy of mechanical systems with nonstationaryconstaints 
moving impulsively under the conditions of the Carnot -0strogradskii theorems /l/, 
is studied. Theorems concerning the change in kinetic energy of a constrained 
system under the action of impulsive, nonretentive constraints,are proved, and an 
example is solved. 

Let a motion of a mechanical system be restricted by perfect holonomic and linear non- 
holonomic constraints. The position of the system is given by the generalized coordinates 

q1, . . ., qT (r>m,m denoting the number of degrees of freedom), i.e. the generalized velocities 
satisfy, at any instant of time, the equations 

q;+p-j,bpj4Jj.-bp=0 @=I,..., r-m) (1) 

where the coefficients bljj and bp are continuously differentiable functionsofthegeneralized 
coordinates and time. At a certain instant additional perfect nonretentive constraintsofthe 
form 

(I I+; = i& a&* (v = 1, . . . I m - 1) (2) 

are imposeti on the system. The coefficients oyi satisfy the same demands as the coefficients 
of (1). 

In what follows, we shall use the terminology of /2/, according to which the constraints 
of the type (2) shall be called catastatic (all terms of the equation containing generalized 
velocities), and those of type (1) shall be called acatastatic. Let us separate the expres- 
sion for the kinetic energy 13 of the system obtained by eliminating the dependent velocities 
with help of the constraint equations (11, into a group 0, of terms of second power with re- 
spect to the generalized velocities, group e1 of terms linear in the generalized velocities, 
and group So of terms indpendent of the generalized velocities 

e = 8, + e1 + e. 

Constructing the equations of motion of the system with constraints (1) in the usual man- 
ner and integrating them over the time interval of the impulsive interaction with the con- 
straints (2), we obtain, under the assumption that active impulsive forces are absent, the 
equations of impulsive motion /3/ 

(3) 

(j I_+ = f+ -j- the indices plus and minus refer to the characteristics corresponding to the 
state of the system before and after the impact). Function 0, can be regardedasthekinetic 
energy of a mechanical system which we shall call the reduced system. The impact resulting 
from the application of the constraints will take place if the rates of deformation of the 
constraints (2) (a,,) at the initial instant are negative 

q;Ly - ,zl nviqi’- = av (v = 1, . , m - 0 (41 

In the case of an elastic collision the post-impact state is characterized by the positive 
rates of relaxation of the constraints (&) (4) 

q;:, - ii uviqi’+ = p, (v = 1, . ) m - 2) (5) 
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The process of collision can be conveniently represented in the form of two phases. The 

end of the first phase is determined by the instant at which the deformationof the constraints 
ceases and their relaxation (restoration) begins. The generalized velocities ('II'* 3 r/ , , , '*I 
corresponding to this state must satisfy the constraint equations (2). 

Let us assume that the deformation of all the constraints is terminated simultaneously. 

The Camot-Ostrogradskii theorems refer to the changes in the kinetic energy occurring dur- 

ing the first phase of the impulsive action of the constraints, during the second phase of 

the collision, and in the course of the whole collision. Proofs of the theorems are known /l/ 
for the restricted systemswithholonomicstationaryconstraints. To prove the first theorem 
we multiply each of the equations of impusive motion (3) for the first phase by yi'* and sumit 

over i. This yields 

(6) 

Taking into account the fact that the generalized velocities at the end of the first phase 
satisfy the equations (21, we reduce (6) to the form 

(7) 

Since e2 is a homogeneous quadratic form, (7) yields the following relation 

2ep* - 29, (q’-, qy 7 0 (cl? (q’_, q’*) = + f+_ -- ljqk 9j .*) 
k. j=l 

where Ba(9'-, q’*)is a bilinear form of the generalized velocities ("1h.j are the inertial cceffic- 

ients) . The well known properties of the bilinear forms allows the following substitution: 

%(9.-1 9.X) =~I;2 W,(9'_, 'I'-) + or (4 '*, q’*) - o1 (q’- _ q.*, q’- -~ q’*)] (8) 
B:, (q’-. q’-) m-1 H,-, o2 (q’*, q’*) up 

after which we obtain 
I& _ fl,* Cl, (q’_ - q’“, q.- - q'*) 

(9) 

We obviously arrive at the same result when the constraints imposed are maintained after the 

impact, since in this case the whole process of collision consists of a single phase (perfect- 

ly inelastic impact). The relation (9) corresponds to the following assertion of the theorem: 

under the impuslive motion of the system caused by the application of the perfect permanent 

catastatic constraints, the loss of kinetic energy in the reduced system is equal to the 

kinetic energy of the generalized velocities lost by the reduced system. The second theorem 

is obtained by transforming, in the same manner, the equations of impuslive motion (3) con- 

structed for the second phase of the collision. As a result, we arrive at the relation 

&+ - ez* = 0, (q’+ - q.*, q’+ - q'*) (10) 

which expresses the second theorem: during the second phase of the collision in which the 

system is released from the perfect catastatic constraints, the kinetic energy gained by the 

reduced system is equal to the kinetic energy of the generalized velocities acquired by the 

reduced system. 
In proving the third theorem we shall assume that the elastic properties of the inter- 

action between the system and the nonretentive constraints are characterized by the equal 

values of the ratios of the rates at which the constraints diminish, to the deformation rates, 

i.e. 
B, = -pee, (v = 1,. ..,m - I) (11) 

The physical sense of the coefficient p can be established using the results of /5/, namely, 

the coefficient p coincides with the coefficient of restitution. In other words, we assume 

that the coefficients of restitution are the same in the case of elastic interaction between 

the material points of the system and the nonretentive constraints. This condition enables us 
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to close, with the help of (4) and (S), the equations (3) with respect to the generalized 
velocities qI'+, . . ., pm’+ 

Multiplying equations (3) by the factors (qi’++ pqi’-) respectively and summing over the 
index i (i = 1, . . ., I), we obtain 

(12) 

Making in equality (12) the substitution 

and taking into account the conditions (3) and relations 

~(~)+q~-=~(~)-*.+=ze,rq.-.q.t) 
i=l 

we find, that (12) assumes the form 

2e,+ - 2pe,- - 2(p - l)B,(q’-, q’-) = 0 (13) 

Substituting in (13) the bilinear form (8) and carrying out the obvious manipulations, we ob- 
tain 

1-P &--I&+ = m e,(q'- -gp’+, q’- -gay (14) 

Thus we have proved the third theorem, namely that the loss of kinetic energy in the reduced 
system due to its interaction with the perfect catastatic constraints (with the ratios of 
the deformation rates to the constraint relaxation rates equal to each other) is equal to 
(1- l)/(l -I- P), and represents the part of the kinetic energy of the reduced system computed 
for the generalized velocity losses. 

Example. A homogeneous sphere of radius r and unit mass rolls without slipping on a 
rough horizontal plate rotating, together with a smooth vertical wall, about the OZ -axis 
(see Fig-l), with angular velocity Q. At some instant the sphere hits the wall, and the co- 
efficient of restitution of the impact is x. We require to set up the equations for deter- 
mining the post-impact velocities. 

Let us choose a fixed OXYZ coordinate system as shown in Fig.1. The kinetic energy of 
the sphere is given by the equation 

2T = z’? + Y’~ + z’~ +p2 (0%’ + wyz + co,‘) 

where pis the radius of inertia of the sphere relative to any diameter, and I, y, z are the 
coordinates of the center. We write the projections of the angular velocity of the sphere 
Q, q/3 0, in terms of 

0% = 

and substitute these 

Fig.1 

At the instant of impact, the following additional constraint ap- 
pears: 

t'= --Qy 

which, according to (15) and (16), is expressed in terms of the 

the Euler angles %%6 
B'cosv+v'sin6sin*, wl= q~'cos*+q', 0" = @'sin*- 'p'sin6cOg* (15) 

equations into the expression forthekinetic energy 

2T zzr ~‘2 + y’L + ~‘2 + p” (6’” + q’” + 4.2 + 2~3. cos 6) 

The absence of slipping corresponds to the constant action exerted 
by the constraints 

2‘- Toy+ Qy = 0, y'+ roJ - P.2 = 0, I'= 0 (16) 

Choosing 6',q',rp as the independent generalized velocities, we ob- 
tain the following expression for the kinetic energy of the reduced 
system: 

\y 
2Rz = (r* + P~)*'~ + (9 sina@ + pz)'p'* + P*(*'~ + 2~~9' ~0~6) (17) 
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generalized coordinates as follows: 
6’ sing - ‘p’ sin 6 cos1() = 0 

Using this expression together with (17), we construct the equations (3) 

($sina6 + p“)Av’ sin+ + (re + pz) A~'sin6 COSQ + p'A$' cos 6 sin 'JJ = 0, A+' + Am' cos 19 = 0 (Aq’ = q’+ - q’-) 

The third equation is obtained,using a generalization of the Carnot-Ostrogradskii theorem (14) 
and taking into account the relation PL=X 

l--x 
02+ - 02- = - 1s~ &(A+., A?', A$') 

or more simply 
zt'+ sin+ - q'+ sin 6 cos II, = - x (S.- sin$ - cp'- sin 6 cos$) 

The resulting equations of impulsive motion of a sphere coincide, as expected, with the 
impact equations obtained in /3/ (Ch. 111, Sect.9, Ex.5) where a motion along a fixed surface 
was considered. 

In conclusion we shall show how to generalize the theorems to the case of elastic inter- 
action with acatastatic constraints 

qi+v = 2 ‘vi4i’ + ‘y (v==1, . . ..m--l) 
i=l 

The only difference in the proof will consist of the fact that all arguments will be repeated 
for the relative velocities. The relative velocities of some state of the system are defined 
as the differences between the corresponding generalized velocities and the translational 
generalized velocities, the latter represented by any set of the generalized velocities sat- 
isfying the acatastatic constraints. If ql*, . . ., qm’e are the translational veclocities, then 
the relative velocities before, after, and at the end of the first phase of collision, are 
equal to the differences 

(n.'--q.Y (9 3 1’1 
*+-q.'"), 

I 
(qj’* - qj’e) (; = 1, ., m) 

In this case the kinetic energy fJ2 in the equations (9), (10) and (14) expressing the general- 
izations of the Carnot-Ostrogradskii theorems, will also be calculated for the relative vel- 
ocities. 
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